计算二次积分∫01dy∫y1y2e-x2dx.

作者:高老师 浏览 1

计算二次积分∫01dy∫y1y2e-x2dx.
【正确答案】:由于{(x,y)∣0≤y≤1,y≤x≤1}={(x,y)∣0≤x≤1,0≤y≤x} 所以 ∫01dy∫y1y2e-x2dx = ∫01dx∫0xy2e-x2dy= 1/3∫01x3e-x2dx =-(1/6)∫01x2de-x2=-(1/6) (x2e-x201-∫01e-x2dx2) =-(1/6)(e-1+e-x201)=1/6-1/3e

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板