计算二重积分∫∫D(x2+y2)dσ,其中D是由y=x2,x=1及y=0所围区域.

作者:高老师 浏览 1

计算二重积分∫∫D(x2+y2)dσ,其中D是由y=x2,x=1及y=0所围区域.
【正确答案】:积分区域D={(x,y)∣0≤x≤1,0≤y≤x2}所以 ∫∫D(x2+y2)dσ=∫01dx∫0x2 (x2+y2)dy =∫01(x2y∣0x2+(1/3)y30x2)dx =∫01x4dx+(1/3)∫01x6dx =(1/5)x501+(1/21)x701=26/105

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板