当前位置:首页 > 高等数学(工本)(00023) > 正文内容

I=∫∫∫Ω(x+y+z)dxdydz,Ω:x2+y2+z2=1球面内部,则I=()

I=∫∫∫Ω(x+y+z)dxdydz,Ω:x2+y2+z2=1球面内部,则I=()
A、∫∫∫Ωdxdydz=Ω的体积
B、∫0de∫0dθ∫01rsinθdr
C、∫0dθ∫0πd∫01rsindr
D、∫0πde∫0dθ∫01rsinθdr
【正确答案】:C
【题目解析】:令{x=rsinφcosθ{y=rsinφsinθ,转化为球面坐标即可得{z=rcosφI=∫∫∫(x2+y2+z2)=∫0dθ∫0πdφ ∫01rsin dr.故应选C.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://www.20230611.cn/post/429386.html