已知π/2﹤β﹤a﹤3π/4,cos(a-β)=12/13,sin(a+β)=-(3/5),求sin2a的值.
2024-09-16数学(文史类)(高升专)(c0002)
已知π/2﹤β﹤a﹤3π/4,cos(a-β)=12/13,sin(a+β)=-(3/5),求sin2a的值.
【正确答案】:因为π/2﹤β﹤3π/4,cos(a-β)=12/13,sin(a+β)=-(3/5), 所以a-β∈(0,π/2),a+β∈(π,3π/2). 所以sin(a-β)=5/13,cos(a+β)=-(4/5). sin2a=sin[(a+β)+(a-β)] =sin(a+β)cos(a-β)+cos(a+β)sin(a-β) =-(3/5)×1(2/13)-(4/5)×(5/13)=-(56/65).
【正确答案】:因为π/2﹤β﹤3π/4,cos(a-β)=12/13,sin(a+β)=-(3/5), 所以a-β∈(0,π/2),a+β∈(π,3π/2). 所以sin(a-β)=5/13,cos(a+β)=-(4/5). sin2a=sin[(a+β)+(a-β)] =sin(a+β)cos(a-β)+cos(a+β)sin(a-β) =-(3/5)×1(2/13)-(4/5)×(5/13)=-(56/65).

扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。